Affiliation:
1. Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536, USA.
Abstract
Cocaine is highly addictive and no anticocaine medication is currently available. Accelerating cocaine metabolism, producing biologically inactive metabolites, is recognized as an ideal anticocaine medication strategy, especially for the treatment of acute cocaine toxicity. However, currently known wild-type enzymes have either too low a catalytic efficiency against the abused cocaine, in other words (-)-cocaine, or the in vivo half-life is too short. Novel computational strategies and design approaches have been developed recently to design and discover thermostable or high-activity mutants of enzymes based on detailed structures and catalytic/inactivation mechanisms. The structure- and mechanism-based computational design efforts have led to the discovery of high-activity mutants of butyrylcholinesterase and thermostable mutants of cocaine esterase as promising anticocaine therapeutics. The structure- and mechanism-based computational strategies and design approaches may be used to design high-activity and/or thermostable mutants of many other proteins that have clear therapeutic potentials and to design completely new therapeutic enzymes.
Subject
Drug Discovery,Pharmacology,Molecular Medicine
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献