Enhancing vascular relaxing effects of nitric oxide-donor ruthenium complexes

Author:

Paulo Michele1,Banin Tamy M1,de Andrade Fernanda A2,Bendhack Lusiane M1

Affiliation:

1. Department of Physics & Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14.040–903 Ribeirão Preto, São Paulo, Brazil

2. Deptartment of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil

Abstract

Ruthenium-derived complexes have emerged as new nitric oxide (NO) donors that may help circumvent the NO deficiency that impairs vasodilation. NO in vessels can be produced by the endothelial cells and/or released by NO donors. NO interacts with soluble guanylyl-cyclase to produce cGMP to activate the kinase-G pathway. As a result, conductance arteries, veins and resistance arteries dilate, whereas the cytosolic Ca2+ levels in the smooth muscle cells decrease. NO also reacts with oxygen or the superoxide anion, to generate reactive oxygen species that modulate NO-induced vasodilation. In this article, we focus on NO production by NO synthase and discuss the vascular changes taking place during hypertension originating from endothelial dysfunction. We will describe how the NO released from ruthenium-derived complexes enhances the vascular effects arising from failed NO generation or lack of NO bioavailability. In addition, how ruthenium-derived NO donors induce the hypotensive effect by vasodilation is also discussed.

Publisher

Future Science Ltd

Subject

Drug Discovery,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3