Affiliation:
1. Departments of Computing Science & Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E8 Canada and National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, AB, T6G 2M9 Canada.
Abstract
One of the central challenges to metabolomics is metabolite identification. Regardless of whether one uses so-called ‘targeted’ or ‘untargeted’ metabolomics, eventually all paths lead to the requirement of identifying (and quantifying) certain key metabolites. Indeed, without metabolite identification, the results of any metabolomic analysis are biologically and chemically uninterpretable. Given the chemical diversity of most metabolomes and the character of most metabolomic data, metabolite identification is intrinsically difficult. Consequently a great deal of effort in metabolomics over the past decade has been focused on making metabolite identification better, faster and cheaper. This review describes some of the newly emerging techniques or technologies in metabolomics that are making metabolite identification easier and more robust. In particular, it focuses on advances in metabolite identification that have occurred over the past 2 to 3 years concerning the technologies, methodologies and software as applied to NMR, MS and separation science. The strengths and limitations of some of these approaches are discussed along with some of the important trends in metabolite identification.
Subject
Medical Laboratory Technology,Clinical Biochemistry,General Pharmacology, Toxicology and Pharmaceutics,General Medicine,Analytical Chemistry
Cited by
243 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献