Inductively coupled plasma-MS in drug development: bioanalytical aspects and applications

Author:

van Heuveln Fred1,Meijering Henri1,Wieling Jaap2

Affiliation:

1. QPS Netherlands BV, Petrus Campersingel 123, 9713 AG, Groningen, The Netherlands

2. QPS Netherlands BV, Petrus Campersingel 123, 9713 AG, Groningen, The Netherlands.

Abstract

The vast majority of today’s modern bioanalytical methods for pharmacokinetic, pharmacodynamic and immunogenicity purposes are based on LC–MS/MS and immunoanalytical approaches. Indeed, these methodologies are suitable for a wide range of molecules from small to large. For a smaller but not insignificant group of compounds, LC–MS/MS is not suitable – or in some cases much less suitable – as a reliable bioanalytical methodology, and inductively coupled plasma (ICP)-MS is a more appropriate methodology. ICP-MS is one of these less widely used techniques in drug development. This methodology is predominantly used for elemental bioanalysis for pharmacokinetics, for imaging purposes, for mass-balance, food-effect and biomarker studies. In addition, in the last couple of years an increasing number of applications has been published, where ICP-MS and its various hyphenations (LC–ICP-MS, CE–ICP-MS) have been used for speciation/metabolism and proteomics studies. Here, the analytical potential, the quantitative bioanalytical aspects, the various modes of operation and the challenges of the application of ICP-MS in life sciences applications are given. This includes an overview of recent applications in this area in scientific literature, the various hyphenation possibilities and their application areas and the analysis of the various sample matrices applicable to these fields. It also provides a brief outlook of where the potential of this technique lies in the future of regulated bioanalysis and drug development.

Publisher

Future Science Ltd

Subject

Medical Laboratory Technology,Clinical Biochemistry,General Pharmacology, Toxicology and Pharmaceutics,General Medicine,Analytical Chemistry

Reference176 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3