Self-organizing molecular fingerprints: a ligand-based view on drug-like chemical space and off-target prediction

Author:

Schneider Gisbert12,Tanrikulu Yusuf1,Schneider Petra2

Affiliation:

1. Johann Wolfgang Goethe-University, Siesmayerstr. 70, D-60323 Frankfurt am Main, Germany.

2. Schneider Consulting GbR, George-C.-Marshall Ring 33, D-61440 Oberursel, Germany

Abstract

Background: Reliable prediction of multiple ligand–receptor interactions for a given bioactive compound helps recognize and understand off-target effects, and enables drug re-purposing and scaffold-hopping in lead discovery. We developed a ligand-based computational method for drug-target prediction that is independent from protein structural analysis. Method: The idea is to infer drug targets from the pharmacophoric feature similarity of known ligands, and define functional target similarity from a ligand perspective, which also provides access to targets with unknown structures. First, known ligands were represented by topological pharmacophoric features. Then, the self-organizing map technique was used to generate fingerprint patterns for similarity analysis, where each resulting fingerprint represents a drug target. Target fingerprints were clustered and analyzed for correlations. Well-structured dendrograms were obtained presenting interpretable and meaningful relationships between drug targets. Conclusion: Self-organization of fingerprints reduces noise from molecular pharmacophore descriptors, captures their essential features, and reveals potential cross-activities of ligand classes and off-target effects of bioactive compounds.

Publisher

Future Science Ltd

Subject

Drug Discovery,Pharmacology,Molecular Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3