Integrating SQA into the Robotic Software Development Lifecycle

Author:

Mohammed Rahimoddin

Abstract

Software Quality Assurance (SQA) is integrated into the robotic software development lifecycle to improve robotic system dependability, safety, and performance in this research. The main goals are finding gaps in existing SQA procedures, presenting a specialized SQA integration architecture, and solving robotics difficulties, including hardware-software Integration, real-time processing, and machine learning validation; the research evaluates current SQA methodologies and proposes changes using secondary data from the literature, industry reports, and technical publications. Due to their intricate interconnections, hardware-in-the-loop (HIL) testing, real-time performance assessments, and automated Testing are crucial to the robotic system SQA. The report also notes resource requirements for extensive testing and simulation fidelity. Policy implications include standardizing testing techniques, investing in new simulation technology, and establishing safety and compliance regulations. The suggested paradigm addresses these difficulties to help design more dependable and competent robotic systems, improving robotics and its applications.

Publisher

ABC Journals

Reference28 articles.

1. Addimulam, S., Mohammed, M. A., Karanam, R. K., Ying, D., Pydipalli, R., Patel, B., Shajahan, M. A., Dhameliya, N., & Natakam, V. M. (2020). Deep Learning-Enhanced Image Segmentation for Medical Diagnostics. Malaysian Journal of Medical and Biological Research, 7(2), 145-152. https://mjmbr.my/index.php/mjmbr/article/view/687

2. Ahmed, Z. (2015). Essential Design Modeling for Scientific Software Development. PeerJ PrePrints. https://doi.org/10.7287/peerj.preprints.1423v1

3. Anumandla, S. K. R., Yarlagadda, V. K., Vennapusa, S. C. R., & Kothapalli, K. R. V. (2020). Unveiling the Influence of Artificial Intelligence on Resource Management and Sustainable Development: A Comprehensive Investigation. Technology & Management Review, 5, 45-65. https://upright.pub/index.php/tmr/article/view/145

4. Deming, C., Pasam, P., Allam, A. R., Mohammed, R., Venkata, S. G. N., & Kothapalli, K. R. V. (2021). Real-Time Scheduling for Energy Optimization: Smart Grid Integration with Renewable Energy. Asia Pacific Journal of Energy and Environment, 8(2), 77-88. https://doi.org/10.18034/apjee.v8i2.762

5. Deniz, C., Cakir, M. (2018). In-line Stereo-camera Assisted Robotic Spot Welding Quality Control System. The Industrial Robot, 45(1), 54-63. https://doi.org/10.1108/IR-06-2017-0117

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3