Author:
Efimova S. S.,Schagina L. V.,Ostroumova O. S.
Abstract
The role of membrane components, sterols, phospholipids and sphingolipids in the formation and functioning of ion-permeable nanopores formed by antifungal macrolide antibiotics, amphotericin B, nystatin and filipin in planar lipid bilayers was studied. Dipole modifiers, flavonoids and styryl dyes, were used as a tool to study the molecular mechanisms of polyene channel-forming activity. The introduction of dipole modifiers into the membrane bathing solutions was shown to change the conductance of single channels and the steadystate transmembrane current induced by polyene antibiotics in the sterol-containing phospholipid-bilayers. The conductance of single amphotericin B channels was found to depend on the dipole potential of the membrane. The experiments with various phospholipids, sterols, and polyenes led to the assumption that the shape of a phospholipid molecule, the presence of double bonds at the positions 7 and 22 of a sterol molecule, the number of conjugated double bonds, and the presence of an amino sugar in the polyene antibiotic molecule are important factors impacting the stability of polyene-lipid complexes forming ion-permeable pores. Experimental and literature data presented in the paper suggest that the channel-forming activity of polyene antibiotics is also affected by the physicochemical properties of polyene-enriched ordered membrane domains.
Subject
Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献