Effect of colchicine on physiological and biochemical properties of <i>Rhodococcus qingshengii</i>

Author:

Markova Yu. A.1ORCID,Belovezhets L. A.2ORCID,Nurminsky V. N.1ORCID,Kapustina I. S.1ORCID,Ozolina N. V.1ORCID,Gurina V. V.1ORCID,Rakevich A. L.3ORCID,Sidorov A. V.1ORCID

Affiliation:

1. Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences

2. A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

3. Irkutsk Branch of the Institute of Laser Physics, The Siberian Branch of the Russian Academy of Sciences

Abstract

The genus Rhodococcus includes polymorphic non-spore-forming gram-positive bacteria belonging to the class Actinobacteria. Together with Mycobacterium and Corynebacterium, Rhodococcus belongs to the Mycolata group. Due to their relatively high growth rate and ability to form biof ilms, Rhodococcus are a convenient model for studying the effect of biologically active compounds on pathogenic Mycolata. Colchicine was previously found to reduce biof ilm formation by P. carotovorum VKM B-1247 and R. qingshengii VKM Ac-2784D. To understand the mechanism of action of this alkaloid on the bacterial cell, we have studied the change in the fatty acid composition and microviscosity of the R. qingshengii VKM Ac-2784D membrane. Nystatin, which is known to reduce membrane microviscosity, is used as a positive control. It has been found that colchicine at concentrations of 0.01 and 0.03 g/l and nystatin (0.03 g/l) have no signif icant effect on the survival of R. qingshengii VKM Ac-2784D cultivated in a buffered saline solution with 0.5 % glucose (GBSS). However, colchicine (0.03 g/l) signif icantly inhibits biof ilm formation. Rhodococcus cells cultivated for 24 hours in GBSS with colchicine acquire a rounded shape. Colchicine at 0.01 g/l concentration increases C16:1(n-7), C17:0, C20:1(n-9) and C21:0 fatty acids. The microviscosity of the membrane of individual cells was distributed from the lowest to the highest values of the generalized laurdan f luorescence polarization index (GP), which indicates a variety of adaptive responses to this alkaloid. At a higher concentration of colchicine (0.03 g/l) in the membranes of R. qingshengii VKM Ac-2784D cells, the content of saturated fatty acids increases and the content of branched fatty acids decreases. This contributes to an increase in membrane microviscosity, which is conf irmed by the data on the GP fluorescence of laurdan. All of the above indicates that colchicine induces a rearrangement of the Rhodococcus cell membrane, probably in the direction of increasing its microviscosity. This may be one of the reasons for the negative effect of colchicine on the formation of R. qingshengii VKM Ac-2784D biof ilms.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Reference23 articles.

1. Abreu A.C., McBain A.J., Simoes M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat. Prod. Rep. 2012; 29(9):1007-1021. DOI 10.1039/c2np20035j.

2. Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911-917.

3. Bybin V.A., Turskaya A.L., Maksimova L.A., Markova Yu.A. Evaluation of the influence of some alkaloids on biofilm formation by different bacterial species. In: Proceedings of the Annual Meeting of the Society of Plant Physiologists of Russia, the All-Russia Scientific Conference with International Participation, and the School of Young Scientists. Irkutsk: Sochava Institute of Geography of the Siberian Branch of the Russian Academy of Sciences, 2018;1206-1209. DOI 10.31255/978-5-94797-319-8-1206-1209. (in Russian)

4. Christie W.W. Preparation of ester derivatives of fatty acids for chromatographic analysis. In: Christie W.W. Advances in Lipid Methodology – Two. Dundee: Oily Press, 1993;69-111.

5. de Carvalho C.C., Marques M.P., Hachicho N., Heipieper H.J. Rapid adaptation of Rhodococcus erythropolis cells to salt stress by synthesizing polyunsaturated fatty acids. Appl. Microbiol. Biotechnol. 2014;98(12):5599-5606. DOI 10.1007/s00253-014-5549-2.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3