The PTENP1 Pseudogene, Unlike the PTEN Gene, Is Methylated in Normal Endometrium, As Well As in Endometrial Hyperplasias and Carcinomas in Middle-Aged and Elderly Females

Author:

Kovalenko T. F.,Morozova K. V.,Ozolinya L. A.,Lapina I. A.,Patrushev L. I.

Abstract

The tumor suppressor PTEN controls multiple cellular functions, including cell cycle, apoptosis, senescence, transcription, and mRNA translation of numerous genes. In tumor cells, PTEN is frequently inactivated by genetic mutations and epimutations. The aim of this study was to investigate the methylation patterns of the PTEN gene and its pseudogene PTENP1 as potential genetic markers of endometrial hyperplasia (EH) and endometrial carcinoma (EC). Methylation of the 5-terminal regions of the PTEN and PTENP1 sequences was studied using methyl-sensitive PCR of genomic DNA isolated from 57 cancer, 43 endometrial hyperplasia, and normal tissue samples of 24 females aged 17-34 years and 19 females aged 45-65 years, as well as 20 peripheral venous blood samples of EC patients. None of the analyzed DNA samples carried a methylated PTEN gene. On the contrary, the PTENP1 pseudogene was methylated in all analyzed tissues, except for the peripheral blood. Comparison of PTENP1 methylation rates revealed no differences between the EC and EH groups (0.80 p 0.50). In all these groups, the methylation level was high (71-77% in patients vs. 58% in controls). Differences in PTENP1 methylation rates between normal endometrium in young (4%) and middle-aged and elderly (58%) females were significant (p 0.001). These findings suggest that PTENP1 pseudogene methylation may reflect age-related changes in the body and is not directly related to the endometrium pathology under study. It is assumed that, depending on the influence of a methylated PTENP1 pseudogene on PTEN gene expression, the pseudogene methylation may protect against the development of EC and/or serve as a marker of a precancerous condition of endometrial cells.

Publisher

Acta Naturae Ltd

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3