PTEN, PTENP1, microRNAs, and ceRNA Networks: Precision Targeting in Cancer Therapeutics

Author:

Travis Glena1,McGowan Eileen M.12ORCID,Simpson Ann M.3,Marsh Deborah J.4ORCID,Nassif Najah T.1ORCID

Affiliation:

1. Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia

2. Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China

3. Gene Therapy and Translational Molecular Analysis Laboratory, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia

4. Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia

Abstract

The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well characterised tumour suppressor, playing a critical role in the maintenance of fundamental cellular processes including cell proliferation, migration, metabolism, and survival. Subtle decreases in cellular levels of PTEN result in the development and progression of cancer, hence there is tight regulation of the expression, activity, and cellular half-life of PTEN at the transcriptional, post-transcriptional, and post-translational levels. PTENP1, the processed pseudogene of PTEN, is an important transcriptional and post-transcriptional regulator of PTEN. PTENP1 expression produces sense and antisense transcripts modulating PTEN expression, in conjunction with miRNAs. Due to the high sequence similarity between PTEN and the PTENP1 sense transcript, the transcripts possess common miRNA binding sites with the potential for PTENP1 to compete for the binding, or ‘sponging’, of miRNAs that would otherwise target the PTEN transcript. PTENP1 therefore acts as a competitive endogenous RNA (ceRNA), competing with PTEN for the binding of specific miRNAs to alter the abundance of PTEN. Transcription from the antisense strand produces two functionally independent isoforms (PTENP1-AS-α and PTENP1-AS-β), which can regulate PTEN transcription. In this review, we provide an overview of the post-transcriptional regulation of PTEN through interaction with its pseudogene, the cellular miRNA milieu and operation of the ceRNA network. Furthermore, its importance in maintaining cellular integrity and how disruption of this PTEN–miRNA–PTENP1 axis may lead to cancer but also provide novel therapeutic opportunities, is discussed. Precision targeting of PTENP1-miRNA mediated regulation of PTEN may present as a viable alternative therapy.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference179 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3