Implementation of FPGA-based Accelerator for Convolutional Neural Networks

Author:

Siddiqui Abdullah Farhan,Naik Prof. B. Rajendra

Abstract

This research paper presents a novel FPGA-based accelerator tailored for Convolutional Neural Networks (CNNs), specifically implemented on the Virtex-7 evaluation kit. By harnessing the inherent parallel processing capabilities of FPGAs, the architecture of the accelerator is meticulously crafted using Verilog. The FPGA implementation demonstrates a resource-efficient design, making use of 588 Look-Up Tables (LUTs) and 353 Flip Flops. Notably, the efficient utilization of these resources signifies a careful balance between computational efficiency and the available FPGA resources. This research significantly contributes to the field of hardware acceleration for CNNs by offering an optimized solution for high-performance deep learning applications. The presented architecture serves as a promising foundation for future advancements in FPGA-based accelerators, providing valuable insights for researchers and engineers working in the domain of hardware optimization for Convolutional Neural Networks.

Publisher

HM Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3