Author:
Siddiqui Abdullah Farhan,Naik Prof. B. Rajendra
Abstract
This research paper presents a novel FPGA-based accelerator tailored for Convolutional Neural Networks (CNNs), specifically implemented on the Virtex-7 evaluation kit. By harnessing the inherent parallel processing capabilities of FPGAs, the architecture of the accelerator is meticulously crafted using Verilog. The FPGA implementation demonstrates a resource-efficient design, making use of 588 Look-Up Tables (LUTs) and 353 Flip Flops. Notably, the efficient utilization of these resources signifies a careful balance between computational efficiency and the available FPGA resources. This research significantly contributes to the field of hardware acceleration for CNNs by offering an optimized solution for high-performance deep learning applications. The presented architecture serves as a promising foundation for future advancements in FPGA-based accelerators, providing valuable insights for researchers and engineers working in the domain of hardware optimization for Convolutional Neural Networks.