Forecasting the Consumer Price Index in the Regions of the Philippines using Machine Learning for Time Series Models

Author:

Echevarria John Philip Omol,Aranas Peter John Berces

Abstract

The core objective of this study is to showcase the enhanced forecasting capabilities of a hybrid model that combines the strengths of Artificial Neural Networks (ANN) and Autoregressive Integrated Moving Average (ARIMA) in predicting the Consumer Price Index (CPI). By harnessing the intricate non-linear pattern capturing ability of ANN and the capabilities of ARIMA in modeling linear and autoregressive components, the hybrid model aims to outperform the standalone ARIMA model in accurately forecasting the CPI. Real-world CPI data will be utilized for empirical evaluation and comparison, providing valuable insights into the effectiveness and practical applicability of the hybrid ARIMA-ANN approach in improving CPI forecasting accuracy. The performance of Box Jenkins Models which gives the resulted value of R-squared values for both stationary and non-stationary data are high, indicating that the models explain a significant portion of the variability in the CPI data. The RMSE, MAPE, and MAE values are relatively low, suggesting that the Box-Jenkins models' predictions are close to the actual values. The Ljung-Box Q statistic indicates that all Box-Jenkins models best fit their respective CPI data. The study also employs rigorous statistical methods of machine learning model accuracy assessment, including the Akaike Information Criterion (AIC), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE), to assess the forecasting performance of both models. The results demonstrate that the hybrid ARIMA-ANN model consistently outperforms the standalone ARIMA model, delivering more accurate and reliable forecasts over an extended forecast horizon. The integration of Artificial Neural Networks (ANN) using Multilayer Perceptron (MLP) in the ARIMA models improved the accuracy of the fitted and forecasted values. RMSE and MSE values for the Hybrid ARIMA-ANN models are lower compared to the original Box-Jenkins/ARIMA models, validating the goal of enhancing accuracy through ANN integration.

Publisher

HM Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3