PERAMALAN LAJU INFLASI DENGAN METODE AUTO REGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)

Author:

Djawoto Djawoto

Abstract

Auto Regression Integrated Moving Average (ARIMA) or the combination model of Auto Regression with moving average, is a linier model which is able to represent the stationary time series or non stationary time series. The purpose of this research is to forecast the inflation rate in November 2010 with the Consumer Price Index (CPI) by using ARIMA. The inflation indicator is very important to anticipate in making the Government’s policy and decision as well as for the citizen is for the information to determine what to do in related with savings and investment. By looking at the existing criteria, it is determined that the best model is ARIMA (1,1,0) or AR (1). Model ARIMA (1,1,0), the coefficient value AR (1) is significant,which has the most minimum value of Akaike Info Criterion (AIC) and Schwars Criterion (SC) compare toARIMA (0,1,1) or MA (1) and ARIMA (1,1,1) or AR (1) MA (1). In summarize, the ARIMA model used to forecast the valueof IHK is ARIMA (1,1,0).

Publisher

Sekolah Tinggi Ilmu Ekonomi Indonesia (STIESIA ) Surabaya

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting the Consumer Price Index in the Regions of the Philippines using Machine Learning for Time Series Models;Journal of Artificial Intelligence, Machine Learning and Neural Network;2023-09-13

2. Hubungan inflasi, minyak dunia, dan sektor transportasi dan logistik;Riset Akuntansi dan Portofolio Investasi;2023-06-29

3. Forecasting Inflation Using Seasonal Autoregressive Integrated Moving Average Method for Estimates Decent Living Costs;IOP Conference Series: Materials Science and Engineering;2019-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3