The quality of Slovenian chestnut honey and its specific properties relevant for medical application and functional nutrition
-
Published:2020-12-01
Issue:2
Volume:63
Page:31-44
-
ISSN:1854-3073
-
Container-title:Acta Biologica Slovenica
-
language:
-
Short-container-title:ABS
Author:
Božič Janko,Bertoncelj Jasna,Drobne Damjana,Glavan Gordana,Gunde Cimerman Nina,Leonardi Adrijana,Kopinč Rok,Jemec Kokalj Anita,Novak Sara,Korošec Mojca,Križaj Igor,Podrižnik Blaž,Turk Martina,Zabret Andrej
Abstract
Chestnut honey is well-described in terms of sensory properties, pollen and chemical composition. Specific bitter taste is accompanied with other typical sensory properties derived from its chemical composition, especially in the nectar of sweet chestnut. Compounds from other sources of nectar and honeydew, especially linden, fir and spruce, with smaller amounts from meadow plants, create the specific sensory and chemical properties of Slovene chestnut honey. Based on the chemical composition of the honey, especially the content and proportions of different inorganic ions, it is possible to track the geographical origin of the pasture. Bees contribute significantly to recognized antimicrobial properties of honey by secretion of enzymes and antimicrobial peptides via the food processing glands. When the honey is used for medical purposes, we have to take precautions to avoid microbial and chemical contamination. For the planning of specific use of honey as a medical application we need to explore in detail specific pharmacological properties of single compounds from the chestnut honey and its contribution to the whole activity during wound treatment. In this paper we present a review of most distinct properties of chestnut honey important for its medical application.
Funder
Javna Agencija za Raziskovalno Dejavnost RS
Publisher
University of Ljubljana
Reference64 articles.
1. Al-Waili, N., Salom, K., Al-Ghamdi, A., Ansari, M.J., 2012. Antibiotic, Pesticide, and Microbial Contaminants of Honey: Human Health Hazards. The Scientific World Journal 2012, 1–9. 2. Beretta, G., Artali, R., Caneva, E., Orlandini, S., Centini, M., Facino, R.M., 2009. Quinoline alkaloids in honey: Further analytical (HPLC-DAD-ESI-MS, multidimensional diffusion-ordered NMR spectroscopy), theoretical and chemometric studies. Journal of Pharmaceutical and Biomedical Analysis, 50, 432–439. 3. Bertoncelj, J., Golob, T., Kropf, U., Korošec, M., 2011a. Characterisation of Slovenian honeys on the basis of sensory and physicochemical analysis with a chemometric approach. International Journal of Food Science & Technology, 46, 1661–1671. 4. Bertoncelj, J., Polak, T., Kropf, U., Korošec, M., Golob, T., 2011b. LC-DAD-ESI/MS analysis of flavonoids and abscisic acid with chemometric approach for the classification of Slovenian honey. Food Chemistry, 127, 296–302. 5. Bilikova, K., Krakova, T.K., Yamaguchi, K., Yamaguchi, Y., 2015. Major royal jelly proteins as markers of authenticity and quality of honey. Archives of Industrial Hygiene and Toxicology, 66, 259–267.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|