Anomaly Detection Using Deep Learning Respecting the Resources on Board a CubeSat

Author:

Horne Ross1,Mauw Sjouke1,Mizera Andrzej2ORCID,Stemper André3,Thoemel Jan4

Affiliation:

1. University of Luxembourg, L-4364 Esch-sur-Alzette, Grand Duchy of Luxembourg

2. IDEAS-NCBR, Chmielna 69, 00-801 Warsaw, Poland

3. University of Luxembourg, L-4365 Esch-sur-Alzette, Grand Duchy of Luxembourg

4. University of Luxembourg, L-1359 Luxembourg, Grand Duchy of Luxembourg

Abstract

We explore the feasibility of onboard anomaly detection using artificial neural networks for CubeSat systems and related spacecraft where computing resources are limited. We gather data for training and evaluation using a CubeSat in a laboratory for a scenario where a malfunctioning component affects temperature fluctuations across the control system. This data, published in an open repository, guides the selection of suitable features, neural network architecture, and metrics comprising our anomaly detection algorithm. The precision and recall of the algorithm demonstrate improvements as compared to out-of-limit methods, whereas our open-source implementation for a typical microcontroller exhibits small memory overhead, and hence may coexist with existing control software without introducing new hardware. These features make our solution feasible to deploy on board a CubeSat, and thus on other, more advanced types of satellites.

Funder

Université du Luxembourg

European Space Agency

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering

Reference10 articles.

1. “CubeSat Design Specification (CDS) Rev. 13,” The CubeSat Program, California Polytechnic State Univ., San Luis Obispo, CA, 2015.

2. “6U CubeSat Design Specification Revision 1.0,” The CubeSat Program, California Polytechnic State Univ., TR CP-6UCDS-1.0, San Luis Obispo, CA, 2016.

3. Software Certification as a Limit on Liability: The Case of CubeSat Operations

4. De Claville ChristiansenJ. “CubeSat Space Protocol (CSP): Network-Layer Delivery Protocol for CubeSats and Embedded Systems,” GOMSpace ApS TR GS-CSP-1.1, Aalborg, Denmark, 2011.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3