Pitch–Plunge Equivalence in Dynamic Stall of Ramp Motion Airfoils

Author:

Miotto Renato1ORCID,Wolf William1ORCID,Gaitonde Datta2,Visbal Miguel3

Affiliation:

1. University of Campinas, 13083-860 Campinas, Brazil

2. The Ohio State University, Columbus, Ohio 43210

3. Air Force Research Laboratory, Wright–Patterson Air Force Base, Ohio 45433

Abstract

Large-eddy simulations (LES) are employed to investigate the pitch–plunge equivalence of an SD7003 airfoil undergoing constant ramp motions at Reynolds number [Formula: see text]. The equivalence is constructed based on the geometric effective angle of attack according to the quasi-steady thin-airfoil theory. Two rates of descent (or pitch up) are analyzed for different Mach numbers in order to investigate the effects of compressibility on the evolution of the dynamic stall vortex (DSV). During the onset of the DSV and its transport along the airfoil surface, remarkable similarities are found between pitch and plunge in terms of flow topology, aerodynamic loads, and signatures of wall pressure and friction coefficients. However, these flow similarities cease at high-load conditions as the DSV becomes more susceptible to the peculiarities of the airfoil motion, manifested here by different trailing-edge vortices. Employing a correction for the rotation-induced apparent camber effect present in the pitching case, which results from the quasi-steady thin-airfoil theory, improves the agreement between pitch and plunge. However, it is not sufficient to assimilate their disparate trailing-edge systems. Results also demonstrate that the limit angle at which pitch–plunge equivalence remains valid decreases for higher Mach numbers.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3