Leading-Edge Vortices: Mechanics and Modeling

Author:

Eldredge Jeff D.1,Jones Anya R.2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA;

2. Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742, USA;

Abstract

The leading-edge vortex (LEV) is known to produce transient high lift in a wide variety of circumstances. The underlying physics of LEV formation, growth, and shedding are explored for a set of canonical wing motions including wing translation, rotation, and pitching. A review of the literature reveals that, while there are many similarities in the LEV physics of these motions, the resulting force histories can be dramatically different. In two-dimensional motions (translation and pitch), the LEV sheds soon after its formation; lift drops as the LEV moves away from the wing. Wing rotation, in contrast, incites a spanwise flow that, through Coriolis tilting, balances the streamwise vorticity fluxes to produce an LEV that remains attached to much of the wing and thus sustains high lift. The state of the art of vortex-based modeling to capture both the flow field and corresponding forces of these motions is reviewed, including closure conditions at the leading edge and approaches for data-driven strategies.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3