Validated Dynamic Stall Simulation of Pitching Low Reynolds Number Airfoils

Author:

Zilstra Alison1ORCID,Johnson David A.1ORCID

Affiliation:

1. University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Abstract

Deep dynamic stall is one of several complex behaviors that result in extreme variation of the aerodynamic loads on small wind turbine (SWT) blades during unsteady wind conditions. In this study, unsteady Reynolds-averaged Navier–Stokes simulations are performed for two low Reynolds number (Re) airfoils where sinusoidal pitching is applied to replicate the dynamic stall that occurs on rotating SWT blades. The SD 7037 airfoil is simulated at [Formula: see text] and a pitching reduced frequency of [Formula: see text], and the S833 airfoil is at [Formula: see text] and [Formula: see text]. The simulated lift coefficient and dynamic stall timing agree with experimental data, which is attributed to the wall-normal resolution of the mesh and is an advancement from the early prediction of stall seen consistently in previous numerical studies. The accurate prediction of dynamic stall is found to be dependent on the correct simulation of the bursting of the laminar separation bubble (LSB), which initiates the complete separation of the boundary layer and the formation of a leading-edge vortex. The [Formula: see text] [Formula: see text] model combined with the use of a fine mesh at the airfoil leading edge results in an accurate simulation of the bursting LSB and the correct prediction of the deep dynamic stall.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3