Hybrid Navier–Stokes–Direct Simulation Monte Carlo Automatic Mesh Optimization for Hypersonics

Author:

Mallikarjun Shrutakeerti1,Casseau Vincent1,Habashi Wagdi G.1,Gao Song2,Karchani Abolfazl3ORCID

Affiliation:

1. McGill University, Montreal, Québec H3A 2M7, Canada

2. Ansys, Inc., Montreal, Québec H3A 3G4, Canada

3. Ansys, Inc., Lebanon, New Hampshire 03766

Abstract

This paper describes the development of an unstructured hybrid finite element Navier–Stokes (NS)–direct simulation Monte Carlo (DSMC) framework for hypersonic flows. State-based coupling is employed and simulations of varying thermochemical complexity demonstrate the accuracy, robustness, and computational efficiency of the hybrid all-Mach algorithm. An automatic mesh optimization process using a posteriori error estimates based on the Hessian of the solution goes much further than traditional mesh adaptation processes by equidistributing the error estimator and producing a “single optimal hybrid mesh” with no increase in mesh size and with much higher accuracy. The DSMC region cells of the resulting optimal mesh are smaller than in NS regions and are sized to the local mean free path. Mesh optimization is also shown to greatly improve the quality of the hybrid interfaces from those of the initial mesh. Unstructured meshes are found to represent the hybrid interfaces smoothly, while structured meshes showcase a castellated pattern in the interfaces. The optimal hybrid meshes are found to be statistically similar to optimal full DSMC meshes, thus highlighting the solver independence of the optimizer. Such a coupled hybrid mesh optimization strategy can therefore tackle hypersonic flows with multiscale flow features at any degree of rarefaction.

Funder

Ansys

Natural Sciences and Engineering Council of Canada

Mitacs

Lockheed Martin

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3