Computational study of lateral jet interaction in hypersonic thermochemical non-equilibrium flows using nonlinear coupled constitutive relations

Author:

Zeng ShuhuaORCID,Yang Junyuan,Zhao WenwenORCID,Huang Yifeng,Jiang ZhongzhengORCID,Chen WeifangORCID

Abstract

The present study reports the numerical analyses of lateral jet interaction around a Terminal High Altitude Area Defense-type (THAAD-type) model in hypersonic rarefied flows, with the real gas effect incorporated. The computation approach employed is the recently developed thermochemical non-equilibrium nonlinear coupled constitutive relations (NCCR) model. Regarding the simulation conditions, the flight velocity and height are set to 20 Ma and 80 km, respectively. To disclose the flow mechanism of lateral jet interaction, the complex flowfield characteristics and surface pressure distributions are discussed at length. Additionally, the research explores the impact of two key factors, namely, the jet pressure ratio and the jet Mach number, on the control performance of an in-flight vehicle's reaction control system (RCS). The results demonstrate that the complicated flowfield structures in lateral jet interaction are successfully reproduced by the NCCR model. With an increase in either the jet pressure ratio or the jet Mach number, the force and moment amplification factors decrease, while the absolute value of the normal force coefficient increases. Notably, it is found that the rarefied gas effect captured by the NCCR model against the Navier–Stokes–Fourier solution affects the lateral jet interaction flowfield, e.g., weakening the compressibility of the barrel shock and the expansibility of the Prandtl–Meyer expansion fan, as well as strengthening the jet wraparound effect. Importantly, the rarefied gas effect also exerts a prominent influence on the performance of RCS, with the degree of influence diminishing as the jet Mach number or the jet pressure ratio increases.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3