Benchmarking Deep Learning Models on Myriad and Snapdragon Processors for Space Applications

Author:

Dunkel Emily R.ORCID,Swope JasonORCID,Candela AlbertoORCID,West Lauren,Chien Steve A.ORCID,Towfic Zaid,Buckley Léonie1,Romero-Cañas Juan,Espinosa-Aranda Jose Luis,Hervas-Martin Elena,Fernandez Mark R.2

Affiliation:

1. Ubotica Technologies, Dublin D11 KXN4, Republic of Ireland

2. Hewlett Packard Enterprise, Spring, Texas 77389

Abstract

Future space missions can benefit from processing imagery on board to detect science events, create insights, and respond autonomously. One of the challenges to this mission concept is that traditional space flight computing has limited capabilities because it is derived from much older computing to ensure reliable performance in the extreme environments of space: particularly radiation. Modern commercial-off-the-shelf processors, such as the Movidius Myriad X and the Qualcomm Snapdragon, provide significant improvements in small size, weight, and power packaging; and they offer direct hardware acceleration for deep neural networks, although these processors are not radiation hardened. We deploy neural network models on these processors hosted by Hewlett Packard Enterprise’s Spaceborne Computer-2 on board the International Space Station (ISS). We find that the Myriad and Snapdragon digital signal processors (DSP)/artificial intelligence processors (AIP) provide speed improvement over the Snapdragon CPU in all cases except single-pixel networks (typically greater than 10 times for DSP/AIP). In addition, the discrepancy introduced through quantization and porting of our Jet Propulsion Laboratory models was usually quite low (less than 5%). Models were run multiple times, and memory checkers were deployed to test for radiation effects. To date, we have found no difference in output between ground and ISS runs, and no memory checker errors.

Funder

Jet Propulsion Laboratory

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3