Affiliation:
1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
2. Hewlett Packard Enterprise, Spring, Texas 77389
Abstract
Future space missions will process and analyze imagery on board as well as plan and act more autonomously, placing greater demands on flight computing. Traditional flight hardware provides modest computing power, even when compared to common laptop and desktop computers. A new generation of commercial-off-the-shelf (COTS) processors designed for commercial electronics such as cell phones and tablets, such as the Qualcomm Snapdragon, deliver significant compute in a small size, weight, and power; and they offer hardware acceleration in the form of graphics processing units and digital signal processors. We benchmark a variety of instrument processing and mission planning software on a Qualcomm Snapdragon system on a chip currently hosted by Hewlett Packard Enterprise’s Spaceborne Computer-2 on board the International Space Station to highlight the potential of using embedded COTS processors on future space missions.
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献