Riblet Performance Beneath Transitional and Turbulent Boundary Layers at Low Reynolds Numbers

Author:

Malathi Ananth Sivaramakrishnan,Vaid Aditya,Rao Vadlamani Nagabhushana,Nardini Massimiliano,Kozul Melissa,Sandberg Richard D.

Abstract

Several high-resolution scale-resolving simulations are carried out to examine the effect of riblets on the mean and turbulent statistics of a zero-pressure-gradient boundary layer. The Reynolds number is chosen such that the riblets are exposed to both the transitional and turbulent regimes of the boundary layer. This is in contrast to the turbulent channel flow or fully turbulent boundary layers studied in the literature. The boundary layer is subjected to freestream turbulence and roughness tripping. The transition process and the extent of the turbulent regime on the riblets are altered by tripping the boundary layer with an isolated hemispherical roughness element. The influence of the riblets on the transition onset and the viscous drag reduction is demonstrated through time-averaged, phase-averaged, and instantaneous flow quantities. The effect of the V-shaped riblets with both sharp and curved tips (and valleys) is also explored. With riblets, the viscous drag in the turbulent regime is reduced by 4–6% when compared to a smooth surface, and the efficacy of sharp V-shaped riblets is shown to be marginally higher than for the curved riblets. In the transitional flow regime, the coherent structures over riblets are predominantly spanwise oriented. In particular, a separated shear layer forms over the riblet leading edge as the flow encounters an abrupt surface transition from the smooth surface onto the riblets. A leading-edge ramp is shown to effectively minimize the additional spurt in the turbulent kinetic energy and the associated losses incurred due to this abrupt surface change.

Funder

Science and Engineering Research Board

LIEF HPC-GPGPU

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3