Manipulation of a turbulent boundary layer using sinusoidal riblets

Author:

Cafiero GioacchinoORCID,Amico EnricoORCID,Iuso GaetanoORCID

Abstract

We investigate experimentally the effects of micro-grooves on the development of a zero pressure gradient turbulent boundary layer at two different values of the friction Reynolds number. We consider both the well-known streamwise aligned riblets as well as wavy riblets, characterized by a sinusoidal pattern in the mean flow direction. Previous investigations by the authors showed that sinusoidal riblets yield larger values of drag reduction with respect to the streamwise aligned ones. We perform new particle image velocimetry experiments on wall-parallel planes to get insights into the effect of the sinusoidal shape on the near-wall organisation of the boundary layer and the structures responsible for the friction drag reduction and the turbulence generation. Conditional averages, aimed at identifying the topology of the low-speed streaks in the turbulent boundary layer, reveal that the flow is highly susceptible to wall manipulation. This is particularly evident in the cases that are associated with greater values of drag reduction. The results suggest a fragmentation and/or weakening of the streaks in the sinusoidal cases, that is triggered by the larger values of the wall-normal vorticity found at the streaks’ edges. The results are also confirmed by applying the variable interval spatial averaging events eduction technique. The turbulent kinetic energy budget also shows that the sinusoidal geometry significantly attenuates the turbulence production, hence supporting the idea of the manipulation of the turbulence regeneration cycle.

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3