Trajectory Synthesis for the Coordinated Inspection of a Spacecraft with Safety Guarantees

Author:

Hibbard MichaelORCID,Cubuktepe Murat,Shubert Matthew,Lang Kendra,Topcu Ufuk1,Phillips Sean2

Affiliation:

1. University of Texas at Austin, Austin, Texas 78712

2. Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117

Abstract

As outer space becomes increasingly congested, there exists a growing need for auxiliary spacecraft to perform support missions for existing satellites with guarantees for safety and mission success. We focus on a multispacecraft inspection mission, wherein a team of “deputy” spacecraft inspect a passive “chief” spacecraft by traveling to a set of inspection points while satisfying a set of safety constraints, namely, that they avoid aligning themselves with the sun, that they avoid colliding with one another, and that they avoid colliding with the chief. We model the deputy dynamics using the Clohessy–Wiltshire–Hill equations, and subsequently discretize the environment by exploiting elliptical natural motion trajectories. Using this finite state space, we construct a Markov decision process (MDP) model of the environment and determine the optimal sequence of inspection points for each deputy to visit by solving a vehicle routing problem. To ensure that the deputies satisfy the safety constraints, we form the product MDP of the original MDP and a nondeterministic Büchi automaton that encodes the sensing task and safety constraints. Using this product MDP, we propose a pair of decentralized algorithms that each seeks to minimize the weighted combination of the time and fuel required to safely complete the mission. The first is an offline algorithm that synthesizes a safe trajectory for each deputy that requires no communication at runtime, while the second is an online algorithm that enforces safety at runtime by leveraging communication between the deputies. We provide numerical examples demonstrating the efficacy of both proposed algorithms.

Funder

Air Force Research Laboratory

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Applied Mathematics,Electrical and Electronic Engineering,Space and Planetary Science,Aerospace Engineering,Control and Systems Engineering

Reference35 articles.

1. LemmensS.LetiziaF. “ESA’s Annual Space Environment Report,” ESA Space Debris Office TR GEN-DB-LOG-00288-OPS-SD, 2020.

2. Control Barrier Certificates for Safe Swarm Behavior

3. Guaranteed Obstacle Avoidance for Multi-Robot Operations With Limited Actuation: A Control Barrier Function Approach

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3