Autonomous Spacecraft Attitude Reorientation Using Robust Sampled-Data Control Barrier Functions

Author:

Breeden Joseph1ORCID,Panagou Dimitra1

Affiliation:

1. University of Michigan, Ann Arbor, Michigan 48104

Abstract

This paper presents a provably safe method for constrained reorientation of a spacecraft in the presence of input constraints, bounded disturbances, and fixed frequency zero-order-hold (ZOH) control inputs. The set of states satisfying all pointing and rate constraints, herein called the safe set, is expressed as the intersection of the sublevel sets of several constraint functions, which are subsequently converted into control barrier functions (CBFs). The method then extends prior results on utilizing CBFs with ZOH controllers to the case of relative-degree-2 constraint functions, as occurs in the constrained attitude reorientation problem. The developed sampled-data controller is also shown to remain provably safe in the presence of input constraints and bounded disturbances. Finally, the method is validated and compared to three prior approaches via both low-fidelity and mid-fidelity simulations.

Funder

University of Michigan

National Science Foundation

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Applied Mathematics,Electrical and Electronic Engineering,Space and Planetary Science,Aerospace Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3