Unsteady Aerodynamics of the Retropropulsion Reentry Burn of Vertically Landing Launchers

Author:

Marwege Ansgar1,Gülhan Ali1

Affiliation:

1. DLR, German Aerospace Center, 51147 Cologne, Germany

Abstract

During the vertical descent and landing of a launcher first stage with the aid of retropropulsion, commonly two main propulsive deceleration maneuvers are performed: the reentry burn in high altitudes at hypersonic to supersonic speeds and the landing burn shortly before touchdown at transonic to subsonic speeds. In the frame of the EU-funded H2020 project Retro Propulsion Assisted Landing Technologies (RETALT), the unsteady aerodynamics of those retropropulsion phases were studied. This paper presents results of experiments performed in the Hypersonic Wind Tunnel Cologne on the hypersonic reentry burn. The exhaust plume was simulated with pressurized air. Proper orthogonal decomposition was performed on high-speed schlieren videos, and spectral analyses of the time histories of the resulting modes were compared to the frequency content found in high-frequency pressure measurements. Dominant frequencies were found in the proper orthogonal decomposition modes for one and for three active engines. In the pressure measurements, dominant frequencies could only be observed for three active engines. The normalized pressure fluctuations are in the range of 0.002–0.012. Additionally, a good scaling of the pressures on the base area and in the wake of the configuration with the total pressure downstream of the bow shock could be confirmed, in the sense that the ratio of the local surface pressure to the total pressure downstream of the bow shock match for varying freestream Mach numbers.

Funder

Horizon 2020 Framework Programme

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3