Solid-State Electroaerodynamic Aircraft Design Using Signomial Programming

Author:

Brown Arthur1ORCID,Xu Haofeng1,Gilmore Christopher K.1,Barrett Steven R. H.1ORCID

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Electroaerodynamics (EAD) is a form of airbreathing electric propulsion that uses high voltages to produce and accelerate ions, generating thrust without any moving parts. This method of solid-state propulsion is nearly silent and produces no direct combustion emissions. This paper describes a program for designing and optimizing fixed-wing solid-state aircraft propelled solely using EAD. Signomial programming (SP), an emerging method of efficient multidisciplinary design optimization, is employed. The program incorporates performance models for state-of-the-art EAD thrusters, and for custom high-voltage power electronics. It can be used to generate vehicle specifications, or to assess the effect of technological improvements on vehicle performance. The program was used to design and build a flight demonstrator aircraft, based on a goal of achieving steady level flight. In 2017–2018, the demonstrator successfully achieved steady level flight, a first for a fixed-wing electric aircraft with solid-state propulsion. The unproven nature of the EAD propulsion system necessitated a design philosophy centered around minimal technical risk, affecting configuration selection and choice of objective function. A similar design philosophy may prove useful for other design projects with unproven propulsion systems. Finally, endurance values greater than 30 min are achievable with recent improvements in EAD thruster and battery technology.

Funder

Professor Amar G. Bose Research Grant

Deshpande Center for Technological Innovation, Massachusetts Institute of Technology

MIT Lincoln Laboratory Autonomous Systems Line

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3