Miniature, metal 3D-printed, multiplexed electrohydrodynamic gas pumps

Author:

Sun Zumei,Velásquez-García Luis FernandoORCID

Abstract

Abstract We report the design, fabrication, and experimental characterization of the first additively manufactured, miniature, metal multi-needle ionic wind pumps in the literature. The pumps are needle-ring corona diodes composed of a monolithic inkjet binder-printed active electrode, made in stainless steel 316L, with five sharp, conical needles, and a thin plate counter-electrode, made in copper, with electrochemically etched apertures aligned to the needle array; by applying a large bias voltage across the diode, electrohydrodynamically driven airflow is produced. The influence of tip multiplexing and tip sharpening on the ion current, airflow velocity, volumetric flow rate, and kinetic conversion efficiency of the pumps was characterized under different interelectrode separations, counter-electrode aperture diameters, and applied bias voltages, while triggering a negative corona discharge. At the optimal operating bias voltage (7.4 kV), the as-printed five-needle ionic wind pumps eject air at 2.66 m s−1 and at a volumetric flow rate of 316 cm3 s−1 –a twofold larger than the flow rate of an as-printed single-needle device and with 35% higher efficiency (i.e. 0.27%). Using a two-step electropolishing procedure, the needles of the active electrode can be uniformly sharpened down to 83.4 μm average tip diameter, i.e. about one quarter of their as-printed dimension (∼300 μm). Operated under the same conditions, the electropolished five-needle pumps eject air at 3.25 m s−1, i.e. 22% higher speed compared to the as-printed devices, with the same kinetic conversion efficiency. A two-module model was built in COMSOL Multiphysics, consisting of a three-species corona discharge module and a gas dynamics module, to gain insights into the operation of the pumps and to determine trends for increasing device performance. The electrohydrodynamic (EHD) body force calculated using this model has the same periodic behaviour of the Trichel pulse current. A time-dependent EHD body force analysis was performed, and the stabilized forces averaged over a multiple of the Trichel pulse period were used to predict the large-timescale airflow. The EHD force from the corona simulation can be rescaled to calculate the flow at different bias voltages, greatly reducing the simulation time, and making possible to systematically study the relevant parameters and optimize the design of the air pump. The experimental data agree with the simulation results and the reduced-order modelling.

Funder

Skoltech - MIT Next Generation Program

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering,Nuclear and High Energy Physics

Reference42 articles.

1. Recent advances in electrohydrodynamic pumps operated by ionic winds: a review;Johnson;Plasma Sources Sci. Technol.,2017

2. Ion drag pumps;Stuetzer;J. Appl. Phys.,1960

3. Ion-neutral propulsion in atmospheric media;Christenson;AIAA Journal,1967

4. The effect of DC voltage polarity on ionic wind in ambient air for cooling purposes;Chen;Plasma Sources Sci. Technol.,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3