Affiliation:
1. University of Colorado, Boulder, Colorado 80309
Abstract
Structural subgrid stress models for large-eddy simulation often allow for backscatter of energy from unresolved to resolved turbulent scales, but excessive model backscatter can eventually result in numerical instability. A commonly employed strategy to overcome this issue is to set predicted subgrid stresses to zero in regions of model backscatter. This clipping procedure improves the stability of structural models, however, at the cost of reduced correlation between the predicted subgrid stresses and the exact subgrid stresses. In this paper, we propose an alternative strategy that removes model backscatter from model predictions through the solution of a constrained minimization problem. This procedure, which we refer to as optimal clipping, results in a parameter-free mixed model, and it yields predicted subgrid stresses in higher correlation with the exact subgrid stresses as compared with those attained with the traditional clipping procedure. We perform a series of a priori and a posteriori tests to investigate the impact of applying the traditional and optimal clipping procedures to Clark’s gradient subgrid stress model, and we observe that optimal clipping leads to a significant improvement in model predictions as compared to the traditional clipping procedure.
Funder
Division of Chemical, Bioengineering, Environmental, and Transport Systems
Langley Research Center
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献