Affiliation:
1. Princeton University, Princeton, New Jersey 08544
2. Sandia National Laboratory, Livermore, California 94550
Abstract
This study examines low-temperature chemistry (LTC) enhancement by nanosecond dielectric barrier discharge (ns-DBD) plasma on a dimethyl ether (DME)/oxygen [Formula: see text] (Ar) premixture for deflagration-to-detonation transition (DDT) in a microchannel. It is found that non-equilibrium plasma generates active species and kinetically accelerates LTC of DME and DDT. In situ laser diagnostics and computational modeling examine the influence of the ns-DBDs on the LTC of DME and DDT using formaldehyde ([Formula: see text]) laser-induced fluorescence (LIF) and high-speed imaging. Firstly, high-speed imaging in combination with LIF is used to trace the presence of LTC throughout the flame front propagation and DDT. Then, competition between plasma-enhanced LTC of ignition and reduced heat release rate of combustion due to plasma-assisted partial fuel oxidation is studied with LIF. Observations of plasma-enhanced LTC effects on DDT are interpreted with the aid of detailed kinetic simulations. The results show that an appropriate number of ns-DBDs enhances LTC of DME and increases [Formula: see text] formation and low-temperature ignition, accelerating DDT. Moreover, it is found that, with many ns-DBDs, [Formula: see text] concentration decreases, indicating that excessive discharges may accelerate fuel oxidation in the premixture, reducing heat release and weakening shock–ignition coupling, inhibiting DDT.
Funder
Oak Ridge Institute for Science and Education
National Nuclear Security Administration
NSF
Fusion Energy Sciences
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献