Effect of Plasma-Enhanced Low-Temperature Chemistry on Deflagration-to-Detonation Transition in a Microchannel

Author:

Vorenkamp Madeline1ORCID,Steinmetz Scott2ORCID,Mao Xingqian1,Shi Zhiyu1,Starikovskiy Andrey1,Ju Yiguang1,Kliewer Christopher2

Affiliation:

1. Princeton University, Princeton, New Jersey 08544

2. Sandia National Laboratory, Livermore, California 94550

Abstract

This study examines low-temperature chemistry (LTC) enhancement by nanosecond dielectric barrier discharge (ns-DBD) plasma on a dimethyl ether (DME)/oxygen [Formula: see text] (Ar) premixture for deflagration-to-detonation transition (DDT) in a microchannel. It is found that non-equilibrium plasma generates active species and kinetically accelerates LTC of DME and DDT. In situ laser diagnostics and computational modeling examine the influence of the ns-DBDs on the LTC of DME and DDT using formaldehyde ([Formula: see text]) laser-induced fluorescence (LIF) and high-speed imaging. Firstly, high-speed imaging in combination with LIF is used to trace the presence of LTC throughout the flame front propagation and DDT. Then, competition between plasma-enhanced LTC of ignition and reduced heat release rate of combustion due to plasma-assisted partial fuel oxidation is studied with LIF. Observations of plasma-enhanced LTC effects on DDT are interpreted with the aid of detailed kinetic simulations. The results show that an appropriate number of ns-DBDs enhances LTC of DME and increases [Formula: see text] formation and low-temperature ignition, accelerating DDT. Moreover, it is found that, with many ns-DBDs, [Formula: see text] concentration decreases, indicating that excessive discharges may accelerate fuel oxidation in the premixture, reducing heat release and weakening shock–ignition coupling, inhibiting DDT.

Funder

Oak Ridge Institute for Science and Education

National Nuclear Security Administration

NSF

Fusion Energy Sciences

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3