Affiliation:
1. Sandia National Laboratories , Livermore, California 94551, USA
Abstract
A femtosecond laser induced photofragmentation fluorescence (fs-LIPF) scheme for the sensitive detection and imaging of water vapor is presented. Two photons of 244.3 nm excite water to the D̃ state and produce hydroxyl radicals in the fluorescing à state. Two more photons promote electrons from the D̃ state to a neutral Rydberg state of the (1b2)−1 ionic core through a 2 + 2 doubly resonant process. The resulting high-lying Rydberg state undergoes neutral dissociation, and the energetic hydrogen fragments are detected from their Balmer series fluorescence. These channels (in the low-pressure limit) have detection sensitivities around 1012 molecules per cubic centimeters, orders of magnitude more sensitive than laser-induced fluorescence based approaches, allowing for sensitive non-invasive detection and imaging of water density for many important processes.