Scalable Projection-Based Reduced-Order Models for Large Multiscale Fluid Systems

Author:

Wentland Christopher R.1ORCID,Duraisamy Karthik1,Huang Cheng2

Affiliation:

1. University of Michigan, Ann Arbor, Michigan 48109

2. University of Kansas, Lawrence, Kansas 66045

Abstract

Although projection-based reduced-order models (PROMs) have existed for decades, they have rarely been applied to large, nonlinear, multiscale, and multi-physics systems due to the complexity of effectively implementing such methods. Advances in hyper-reduction have enabled the scalable computation of PROMs for general nonlinear dynamical systems. Further, the recent model-form-preserving least squares with variable transformation method has proven capable of generating stable PROMs for extremely stiff multiphysics problems. In this work, we formulate a PROM framework combining these methodologies and demonstrate that robust, accurate, and cost-effective PROMs can be realized for complex nonreacting and reacting compressible flows. Along with an open-source toolchain for hyper-reduction sample mesh generation from extremely large data sets, this represents an end-to-end effort to assess the applicability of PROMs to large-scale, multiphysics problems of engineering interest. We examine practical considerations for implementing hyper-reduction methods and their effect on memory consumption, load balancing, and interprocessor communications. These considerations produce accurate PROMs that are three to four orders of magnitude more computationally efficient than the full-order model in recreating transonic flow over a cavity and reacting flow in a rocket combustor. Guidelines for data preparation, sample mesh construction, and online PROM solution which promote robust simulations are also provided.

Funder

Air Force Office of Scientific Research

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3