Affiliation:
1. University of Michigan, Ann Arbor 48109, Michigan
2. University of New South Wales Canberra, Canberra, Australian Capital Territory 2600, Australia
Abstract
In this paper, we complete a full-thrust audit of an iodine-based gridded ion thruster. Prior results have demonstrated excellent agreement between indirect and direct laboratory thrust estimates. Here, thrust estimates from numerical modeling, indirect laboratory testing from diagnostic probes and propulsion system telemetry, indirect in-space testing from onboard propulsion system telemetry, and direct in-space testing by analyzing orbital maneuvers are compared to demonstrate consistency between the four methods and complete the thrust audit. Results from recent in-space testing of the iodine-based thruster demonstrate that thrust estimates from all four methods agree to within three standard deviations of uncertainty for the 11 maneuvers studied. This thrust audit represents a critical step toward improving the understanding and technological maturity of iodine-based gridded ion thrusters for future mission applications, and it demonstrates the utility of recently developed in-space thrust inference techniques for analyzing low-thrust maneuvers.
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献