Hierarchical Method for Mining a Prevailing Flight Pattern in Airport Terminal Airspace

Author:

Chu Xiao1,Zeng Weili1,Tan Xianghua1,Zhou Yadong1ORCID,Zhu Dan1

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, 211106 Nanjing, People’s Republic of China

Abstract

Due to the variety of flight patterns in airport terminal airspace, as well as the high global similarity of different flight patterns entering and leaving from the same runway or corridor, it is difficult for current mainstream methods to achieve good clustering. To this end, this paper first constructs a truncated dynamic time warping (TDTW) trajectory similarity measurement to characterize different trajectory patterns with high global similarity and large local differences. Furthermore, a hierarchical flight pattern mining method is proposed, which is divided into four layers according to different characteristics. The first three layers of the method classify trajectories according to takeoff and landing types, runways, and corridors; whereas the fourth layer uses a [Formula: see text]-medoid clustering method based on TDTW, thereby making the mining process more controllable and in line with actual operation. Compared to dynamic time warping, the experimental results show that the intraclass compactness and interclass separation of the cluster obtained by the proposed method have decreased and increased by 44.6 and 20.1%, respectively, and the overall performance has improved by 54.1%. More refined and reasonable flight patterns have been obtained.

Funder

National Natural Science Foundation of China

National Key RD Program of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3