Multiscale Super-Resolution Remote Imaging via Deep Conditional Normalizing Flows

Author:

Heintz Aneesh M.1,Peck Mason1,Mackey Ian1

Affiliation:

1. Cornell University, Ithaca, New York 14850

Abstract

Many onboard vision tasks for spacecraft navigation require high-quality remote-sensing images with clearly decipherable features. However, design constraints and the operational and environmental conditions limit their quality. Enhancing images through postprocessing is a cost-efficient solution. Current deep learning methods that enhance low-resolution images through super-resolution do not quantify network uncertainty of predictions and are trained at a single scale, which hinders practical integration in image-acquisition pipelines. This work proposes performing multiscale super-resolution using a deep normalizing flow network for uncertainty-quantified and Monte Carlo estimates so that image enhancement for spacecraft vision tasks may be more robust and predictable. The proposed network architecture outperforms state-of-the-art super-resolution models on in-orbit lunar imagery data. Simulations demonstrate its viability on task-based evaluations for landmark identification.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3