Abstract
Deep Learning, and Deep Neural Networks in particular, have established themselves as the new norm in signal and data processing, achieving state-of-the-art performance in image, audio, and natural language understanding. In remote sensing, a large body of research has been devoted to the application of deep learning for typical supervised learning tasks such as classification. Less yet equally important effort has also been allocated to addressing the challenges associated with the enhancement of low-quality observations from remote sensing platforms. Addressing such channels is of paramount importance, both in itself, since high-altitude imaging, environmental conditions, and imaging systems trade-offs lead to low-quality observation, as well as to facilitate subsequent analysis, such as classification and detection. In this paper, we provide a comprehensive review of deep-learning methods for the enhancement of remote sensing observations, focusing on critical tasks including single and multi-band super-resolution, denoising, restoration, pan-sharpening, and fusion, among others. In addition to the detailed analysis and comparison of recently presented approaches, different research avenues which could be explored in the future are also discussed.
Funder
Greece and the European Union (European Social Fund)
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献