Clustering data analytics of urban land use for change detection

Author:

Rajabhushanam C.

Abstract

In this study, the author proposes and details a workflow for the spatial-temporal demarcation of urban areal features in 8 cities of Tamilnadu, India. During the inception phase, functional requirements and non-functional parameters are analyzed and designed, within a suitable pixel area and object-oriented derived paradigm. Land use categories are defined from OpenStreetMap (OSM) related works with the scope of conducting climate change, using multispectral sensors onboard Landsat series. Furthermore, we augment the bands dataset with Spatially Invariant Feature Transform (SIFT), Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-Up Index (NDBI), Leaf Area Index (LAI), and Texture base indices, as a means of spatially integrating auto-covariance to stationarity patterns. In doing so, change detection can be pursuit by scaling up the segmentation of regional/zonal boundaries in a multi-dimensional environment, with the aid of Wide Area Networks (WAN) cluster computers such as the BEOWULF/Google Earth Engine clusters. GeoAnalytical measures are analyzed in the design of local and zonal spatial models (GRID, RASTER, DEM, IMAGE COLLECTION). Finally, multi variate geostatistical works are ensued for precision and recall in predictive data analytics. The author proposes reusing machine learning tools (filtering by attribute-based indexing in PaaS clouds) for pattern recognition and visualization of features and feature collection.

Publisher

Academic Publishing Pte. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3