CompoundRay, an open-source tool for high-speed and high-fidelity rendering of compound eyes

Author:

Millward Blayze1ORCID,Maddock Steve1ORCID,Mangan Michael1

Affiliation:

1. Department of Computer Science, University of Sheffield

Abstract

Revealing the functioning of compound eyes is of interest to biologists and engineers alike who wish to understand how visually complex behaviours (e.g. detection, tracking, and navigation) arise in nature, and to abstract concepts to develop novel artificial sensory systems. A key investigative method is to replicate the sensory apparatus using artificial systems, allowing for investigation of the visual information that drives animal behaviour when exposed to environmental cues. To date, ‘compound eye models’ (CEMs) have largely explored features such as field of view and angular resolution, but the role of shape and overall structure have been largely overlooked due to modelling complexity. Modern real-time ray-tracing technologies are enabling the construction of a new generation of computationally fast, high-fidelity CEMs. This work introduces a new open-source CEM software (CompoundRay) that is capable of accurately rendering the visual perspective of bees (6000 individual ommatidia arranged on 2 realistic eye surfaces) at over 3000 frames per second. We show how the speed and accuracy facilitated by this software can be used to investigate pressing research questions (e.g. how low resolution compound eyes can localise small objects) using modern methods (e.g. machine learning-based information exploration).

Funder

Engineering and Physical Sciences Research Council

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference65 articles.

1. Some techniques for shading machine renderings of solids the April 30--May 2, 1968;Appel,1968

2. Evolution of eyes and photoreceptor cell types;Arendt;The International Journal of Developmental Biology,2003

3. A model of ant route navigation driven by scene familiarity;Baddeley;PLOS Computational Biology,2012

4. A new method for mapping spatial resolution in compound eyes suggests two visual streaks in fiddler crabs;Bagheri;The Journal of Experimental Biology,2020

5. X-Ray micro computed-tomography;Baird;Current Biology,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3