CATER: Combined Animal Tracking & Environment Reconstruction

Author:

Haalck Lars1ORCID,Mangan Michael2ORCID,Wystrach Antoine3ORCID,Clement Leo3ORCID,Webb Barbara4ORCID,Risse Benjamin1ORCID

Affiliation:

1. Institute for Geoinformatics and Institute for Computer Science, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany.

2. Department of Computer Science, University of Sheffield, Western Bank, Sheffield S102TN, UK.

3. Research Center on Animal Cognition, Center for Integrative Biology, CNRS - Université Paul Sabatier - Bât 4R4, 169, avenue Marianne Grunberg-Manago, Toulouse 31062, France.

4. School of Informatics, University of Edinburgh, Crichton St, Edinburgh EH8 9AB, UK.

Abstract

Quantifying the behavior of small animals traversing long distances in complex environments is one of the most difficult tracking scenarios for computer vision. Tiny and low-contrast foreground objects have to be localized in cluttered and dynamic scenes as well as trajectories compensated for camera motion and drift in multiple lengthy recordings. We introduce CATER, a novel methodology combining an unsupervised probabilistic detection mechanism with a globally optimized environment reconstruction pipeline enabling precision behavioral quantification in natural environments. Implemented as an easy to use and highly parallelized tool, we show its application to recover fine-scale motion trajectories, registered to a high-resolution image mosaic reconstruction, of naturally foraging desert ants from unconstrained field recordings. By bridging the gap between laboratory and field experiments, we gain previously unknown insights into ant navigation with respect to motivational states, previous experience, and current environments and provide an appearance-agnostic method applicable to study the behavior of a wide range of terrestrial species under realistic conditions.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3