An autoregulatory cell cycle timer integrates growth and specification in chick wing digit development

Author:

Pickering Joseph1ORCID,Chinnaiya Kavitha1ORCID,Towers Matthew1ORCID

Affiliation:

1. Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom

Abstract

A fundamental question is how proliferation and growth are timed during embryogenesis. Although it has been suggested that the cell cycle could be a timer, the underlying mechanisms remain elusive. Here we describe a cell cycle timer that operates in Sonic hedgehog (Shh)-expressing polarising region cells of the chick wing bud. Our data are consistent with Shh signalling stimulating polarising region cell proliferation via Cyclin D2, and then inhibiting proliferation via a Bmp2-p27kip1 pathway. When Shh signalling is blocked, polarising region cells over-proliferate and form an additional digit, which can be prevented by applying Bmp2 or by inhibiting D cyclin activity. In addition, Bmp2 also restores posterior digit identity in the absence of Shh signalling, thus indicating that it specifies antero-posterior (thumb to little finger) positional values. Our results reveal how an autoregulatory cell cycle timer integrates growth and specification and are widely applicable to many tissues.

Funder

Wellcome

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference66 articles.

1. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis;Bandyopadhyay;PLOS Genetics,2006

2. A novel role for Thyroid-Hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development;Barres;Development,1994

3. An intrinsic timer that controls cell-cycle withdrawal in cultured cardiac myocytes;Burton;Developmental Biology,1999

4. Sonic hedgehog-expressing cells in the developing limb measure time by an intrinsic cell cycle clock;Chinnaiya;Nature Communications,2014

5. Titration of four replication factors is essential for the xenopus laevis midblastula transition;Collart;Science,2013

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3