Step-to-step variations in human running reveal how humans run without falling

Author:

Seethapathi Nidhi12ORCID,Srinivasan Manoj1ORCID

Affiliation:

1. Mechanical and Aerospace Engineering, The Ohio State University, Columbus, United States

2. Department of Bioengineering, University of Pennsylvania, Philadelphia, United States

Abstract

Humans can run without falling down, usually despite uneven terrain or occasional pushes. Even without such external perturbations, intrinsic sources like sensorimotor noise perturb the running motion incessantly, making each step variable. Here, using simple and generalizable models, we show that even such small step-to-step variability contains considerable information about strategies used to run stably. Deviations in the center of mass motion predict the corrective strategies during the next stance, well in advance of foot touchdown. Horizontal motion is stabilized by total leg impulse modulations, whereas the vertical motion is stabilized by differentially modulating the impulse within stance. We implement these human-derived control strategies on a simple computational biped, showing that it runs stably for hundreds of steps despite incessant noise-like perturbations or larger discrete perturbations. This running controller derived from natural variability echoes behaviors observed in previous animal and robot studies.

Funder

National Science Foundation

Schlumberger Foundation

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference87 articles.

1. Three uses for springs in legged locomotion;Alexander;The International Journal of Robotics Research,1990

2. The mechanics of hopping by kangaroos (Macropodidae);Alexander;Journal of Zoology,1975

3. Vestibular system: the many facets of a multimodal sense;Angelaki;Annual Review of Neuroscience,2008

4. Walking dynamics are symmetric (enough);Ankaralı;Journal of the Royal Society Interface,2015

5. Sensory reweighting dynamics in human postural control;Assländer;Journal of Neurophysiology,2014

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3