Affiliation:
1. Department of Genetics and Genome Sciences, Case Western Reserve University
2. Department of Neurosciences, Case Western Reserve University
3. Center for RNA Science and Therapeutics, Case Western Reserve University
Abstract
Neuromuscular junctions (NMJs) are specialized synapses that mediate communication between motor neurons and skeletal muscles and are essential for movement. The degeneration of this system can lead to symptoms observed in neuromuscular and motor neuron diseases. Studying these synapses and their degeneration has proven challenging. Prior NMJ studies heavily relied upon the use of mouse, chick, or isolated primary human cells, which have demonstrated limited fidelity for disease modeling. To enable the study of NMJ dysfunction and model genetic diseases, we, and others, have developed methods to generate human NMJs from pluripotent stem cells (PSCs), embryonic stem cells, and induced pluripotent stem cells. However, published studies have highlighted technical limitations associated with these complex
in vitro
NMJ models. In this study, we developed a robust PSC-derived motor neuron and skeletal muscle co-culture method, and demonstrated its sensitivity in modeling motor neuron disease. Our method spontaneously and reproducibly forms human NMJs. We developed multiwell-multielectrode array (MEA) parameters to quantify the activity of PSC-derived skeletal muscles, as well as measured the electrophysiological activity of functional human PSC-derived NMJs. We further leveraged our method to morphologically and functionally assess NMJs from the familial amyotrophic lateral sclerosis (fALS) PSCs,
C9orf72
hexanucleotide (G4C2)n repeat expansion (HRE),
SOD1
A5V
, and
TDP43
G298S
to define the reproducibility and sensitivity of our system. We observed a significant decrease in the numbers and activity of PSC-derived NMJs developed from the different ALS lines compared to their respective controls. Furthermore, we evaluated a therapeutic candidate undergoing clinical trials and observed a variant-dependent rescue of functionality of NMJs. Our newly developed method provides a platform for the systematic investigation of genetic causes of NMJ neurodegeneration and highlights the need for therapeutic avenues to consider patient genotype.
Publisher
eLife Sciences Publications, Ltd