Non-crossover gene conversions show strong GC bias and unexpected clustering in humans

Author:

Williams Amy L123,Genovese Giulio3,Dyer Thomas4,Altemose Nicolas5,Truax Katherine4,Jun Goo6,Patterson Nick3,Myers Simon R5,Curran Joanne E4,Duggirala Ravi4,Blangero John4,Reich David378,Przeworski Molly12,

Affiliation:

1. Department of Biological Sciences, Columbia University, New York, United States

2. Department of Systems Biology, Columbia University, New York, United States

3. Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, United States

4. Department of Genetics, Texas Biomedical Research Institute, San Antonio, United States

5. Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom

6. Department of Biostatistics, University of Michigan, Ann Arbor, United States

7. Department of Genetics, Harvard Medical School, Boston, United States

8. Howard Hughes Medical Institute, Harvard Medical School, Boston, United States

Abstract

Although the past decade has seen tremendous progress in our understanding of fine-scale recombination, little is known about non-crossover (NCO) gene conversion. We report the first genome-wide study of NCO events in humans. Using SNP array data from 98 meioses, we identified 103 sites affected by NCO, of which 50/52 were confirmed in sequence data. Overlap with double strand break (DSB) hotspots indicates that most of the events are likely of meiotic origin. We estimate that a site is involved in a NCO at a rate of 5.9 × 10−6/bp/generation, consistent with sperm-typing studies, and infer that tract lengths span at least an order of magnitude. Observed NCO events show strong allelic bias at heterozygous AT/GC SNPs, with 68% (58–78%) transmitting GC alleles (p = 5 × 10−4). Strikingly, in 4 of 15 regions with resequencing data, multiple disjoint NCO tracts cluster in close proximity (∼20–30 kb), a phenomenon not previously seen in mammals.

Funder

National Institutes of Health (NIH)

Howard Hughes Medical Institute (HHMI)

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3