Spike frequency adaptation supports network computations on temporally dispersed information

Author:

Salaj Darjan1ORCID,Subramoney Anand1ORCID,Kraisnikovic Ceca1ORCID,Bellec Guillaume12ORCID,Legenstein Robert1ORCID,Maass Wolfgang1ORCID

Affiliation:

1. Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria

2. Laboratory of Computational Neuroscience, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Abstract

For solving tasks such as recognizing a song, answering a question, or inverting a sequence of symbols, cortical microcircuits need to integrate and manipulate information that was dispersed over time during the preceding seconds. Creating biologically realistic models for the underlying computations, especially with spiking neurons and for behaviorally relevant integration time spans, is notoriously difficult. We examine the role of spike frequency adaptation in such computations and find that it has a surprisingly large impact. The inclusion of this well-known property of a substantial fraction of neurons in the neocortex – especially in higher areas of the human neocortex – moves the performance of spiking neural network models for computations on network inputs that are temporally dispersed from a fairly low level up to the performance level of the human brain.

Funder

Horizon 2020 Framework Programme

FWF Austrian Science Fund

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference68 articles.

1. Allen Institute. 2018a. Allen Cell Types Database Technical White Paper: Glif Models. http://help.brain-map.org/download/attachments/8323525/glifmodels.pdf.

2. Allen Institute. 2018b. Cell Feature Search. https://celltypes.brain-map.org/data.

3. CNTRICS final task selection: working memory;Barch;Schizophrenia Bulletin,2009

4. Prefrontal cortex and spatial sequencing in macaque monkey;Barone;Experimental Brain Research,1989

5. Long short-term memory and learning-to-learn in networks of spiking neurons;Bellec,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3