Co-learning synaptic delays, weights and adaptation in spiking neural networks

Author:

Deckers Lucas,Van Damme Laurens,Van Leekwijck Werner,Tsang Ing Jyh,Latré Steven

Abstract

Spiking neural network (SNN) distinguish themselves from artificial neural network (ANN) because of their inherent temporal processing and spike-based computations, enabling a power-efficient implementation in neuromorphic hardware. In this study, we demonstrate that data processing with spiking neurons can be enhanced by co-learning the synaptic weights with two other biologically inspired neuronal features: (1) a set of parameters describing neuronal adaptation processes and (2) synaptic propagation delays. The former allows a spiking neuron to learn how to specifically react to incoming spikes based on its past. The trained adaptation parameters result in neuronal heterogeneity, which leads to a greater variety in available spike patterns and is also found in the brain. The latter enables to learn to explicitly correlate spike trains that are temporally distanced. Synaptic delays reflect the time an action potential requires to travel from one neuron to another. We show that each of the co-learned features separately leads to an improvement over the baseline SNN and that the combination of both leads to state-of-the-art SNN results on all speech recognition datasets investigated with a simple 2-hidden layer feed-forward network. Our SNN outperforms the benchmark ANN on the neuromorphic datasets (Spiking Heidelberg Digits and Spiking Speech Commands), even with fewer trainable parameters. On the 35-class Google Speech Commands dataset, our SNN also outperforms a GRU of similar size. Our study presents brain-inspired improvements in SNN that enable them to excel over an equivalent ANN of similar size on tasks with rich temporal dynamics.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Frontiers Media SA

Reference50 articles.

1. A surrogate gradient spiking baseline for speech command recognition;Bittar;Front. Neurosci,2022

2. Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance;Brunel;Phys. Rev. E,2003

3. “Optimal ANN-SNN conversion for high-accuracy and ultra-low-latency spiking neural networks,” BuT. FangW. DingJ. DaiP. YuZ. HuangT. The Tenth International Conference on Learning Representations2022

4. Heterogeneous recurrent spiking neural network for spatio-temporal classification;Chakraborty;Front. Neurosci,2023

5. The heidelberg spiking data sets for the systematic evaluation of spiking neural networks;Cramer;IEEE Transact. Neural Netw. Learn. Syst,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3