A sustained type I IFN-neutrophil-IL-18 axis drives pathology during mucosal viral infection

Author:

Lebratti Tania1,Lim Ying Shiang1,Cofie Adjoa1,Andhey Prabhakar2,Jiang Xiaoping1,Scott Jason1,Fabbrizi Maria Rita1ORCID,Ozantürk Ayşe Naz1ORCID,Pham Christine3,Clemens Regina4,Artyomov Maxim2,Dinauer Mary5,Shin Haina1ORCID

Affiliation:

1. Department of Medicine/Division of Infectious Diseases, Washington University School of Medicine, St Louis, United States

2. Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States

3. Department of Medicine/Division of Rheumatology, Washington University School of Medicine, St Louis, United States

4. Department of Pediatrics/Division of Critical Care Medicine, Washington University School of Medicine, St Louis, United States

5. Department of Pediatrics/Hematology and Oncology, Washington University School of Medicine, St Louis, United States

Abstract

Neutrophil responses against pathogens must be balanced between protection and immunopathology. Factors that determine these outcomes are not well-understood. In a mouse model of genital herpes simplex virus-2 (HSV-2) infection, which results in severe genital inflammation, antibody-mediated neutrophil depletion reduced disease. Comparative single-cell RNA-sequencing analysis of vaginal cells against a model of genital HSV-1 infection, which results in mild inflammation, demonstrated sustained expression of interferon-stimulated genes (ISGs) only after HSV-2 infection primarily within the neutrophil population. Both therapeutic blockade of IFNα/β receptor 1 (IFNAR1) and genetic deletion of IFNAR1 in neutrophils concomitantly decreased HSV-2 genital disease severity and vaginal IL-18 levels. Therapeutic neutralization of IL-18 also diminished genital inflammation, indicating an important role for this cytokine in promoting neutrophil-dependent immunopathology. Our study reveals that sustained type I interferon (IFN) signaling is a driver of pathogenic neutrophil responses and identifies IL-18 as a novel component of disease during genital HSV-2 infection.

Funder

National Institutes of Health

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3