Host transcriptome response to heat stress and Eimeria maxima infection in meat-type chickens

Author:

Ghareeb Ahmed F. A.ORCID,Foutz James C.,Schneiders Gustavo H.,Richter Jennifer N.,Milfort Marie C.,Fuller Alberta L.,Rekaya RomdhaneORCID,Aggrey Samuel E.ORCID

Abstract

Eimeria (E.) maxima parasite infects chickens’ midgut disrupting the jejunal and ileal mucosa causing high morbidity and mortality. Heat stress (HS) is a seasonal stressor that impacts biological functions leading to poor performance. This study elucidates how HS, E. maxima infection, and their combination affect the ileum transcriptome. Two-hundred and forty 2-week-old males Ross708 chickens were randomly allocated into four treatment groups: thermoneutral-control (TNc), thermoneutral-infected (TNi), heat-stress control (HSc), and heat stress-infected (HSi), with 6 replicates each of 10 birds. Infected groups received 200x103 sporulated E. maxima oocysts/bird, and heat-treated groups were raised at 35°C. At 6-day post-treatment, ileums of five randomly selected chickens per group were sampled, RNA was extracted and sequenced. A total of 413, 3377, 1908, and 2304 DEGs were identified when applying the comparisons: TNc vs HSc, TNc vs TNi, HSi vs HSc, and TNi vs HSi, respectively, at cutoff ≥1.2-fold change (FDR: q<0.05). HSc vs TNc showed upregulation of lipid metabolic pathways and degradation/metabolism of multiple amino acids; and downregulation of most immune-related and protein synthesis pathways. TNc vs TNi displayed upregulation of most of immune-associated pathways and eukaryotic mRNA maturation pathways; and downregulation of fatty acid metabolism and multiple amino acid metabolism pathways including tryptophan. Comparing HSi versus HSc and TNi revealed that combining the two stressors restored the expression of some cellular functions, e.g., oxidative phosphorylation and protein synthesis; and downregulate immune response pathways associated with E. maxima infection. During E. maxima infection under HS the calcium signaling pathway was downregulated, including genes responsible for increasing the cytoplasmic calcium concentration; and tryptophan metabolism was upregulated, including genes that contribute to catabolizing tryptophan through serotonin and indole pathways; which might result in reducing the cytoplasmic pool of nutrients and calcium available for the parasite to scavenge and consequently might affect the parasite’s reproductive ability.

Publisher

Public Library of Science (PLoS)

Reference82 articles.

1. Effect of dietary supplementation of prebiotics and probiotics on intestinal microarchitecture in broilers reared under cyclic heat stress;S Ashraf;J Anim Physiol Anim Nutr (Berl).,2013

2. Effects of climate changes on animal production and sustainability of livestock systems;A Nardone;Livestock Science,2010

3. Effects of different levels of organic and inorganic chromium on growth performance and immunocompetence of broilers under heat stress;S Ghazi;Biological trace element research,2012

4. Effects of ascorbic acid and α-lipoic acid on performance and meat quality of broilers subjected to heat stress;H Imik;British Poultry Science,2012

5. Panting and acid-base regulation in heat stressed birds;J Marder;Comp Biochem Physiol A Comp Physiol,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3