Boosting targeted genome editing using the hei-tag

Author:

Thumberger Thomas1ORCID,Tavhelidse-Suck Tinatini12ORCID,Gutierrez-Triana Jose Arturo1,Cornean Alex12ORCID,Medert Rebekka234,Welz Bettina124,Freichel Marc34ORCID,Wittbrodt Joachim14ORCID

Affiliation:

1. Centre for Organismal Studies (COS), Heidelberg University

2. Heidelberg Biosciences International Graduate School (HBIGS)

3. Institute of Pharmacology, Heidelberg University

4. DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim

Abstract

Precise, targeted genome editing by CRISPR/Cas9 is key for basic research and translational approaches in model and non-model systems. While active in all species tested so far, editing efficiencies still leave room for improvement. The bacterial Cas9 needs to be efficiently shuttled into the nucleus as attempted by fusion with nuclear localization signals (NLSs). Additional peptide tags such as FLAG- or myc-tags are usually added for immediate detection or straightforward purification. Immediate activity is usually granted by administration of preassembled protein/RNA complexes. We present the ‘hei-tag (high efficiency-tag)’ which boosts the activity of CRISPR/Cas genome editing tools already when supplied as mRNA. The addition of the hei-tag, a myc-tag coupled to an optimized NLS via a flexible linker, to Cas9 or a C-to-T (cytosine-to-thymine) base editor dramatically enhances the respective targeting efficiency. This results in an increase in bi-allelic editing, yet reduction of allele variance, indicating an immediate activity even at early developmental stages. The hei-tag boost is active in model systems ranging from fish to mammals, including tissue culture applications. The simple addition of the hei-tag allows to instantly upgrade existing and potentially highly adapted systems as well as to establish novel highly efficient tools immediately applicable at the mRNA level.

Funder

Deutsche Forschungsgemeinschaft

H2020 European Research Council

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3