An arginine-rich nuclear localization signal (ArgiNLS) strategy for streamlined image segmentation of single-cells

Author:

Szelenyi Eric R.ORCID,Navarrete Jovana S.ORCID,Murry Alexandria D.,Zhang Yizhe,Girven Kasey S.ORCID,Kuo Lauren,Cline Marcella M.ORCID,Bernstein Mollie X.ORCID,Burdyniuk MariiaORCID,Bowler Bryce,Goodwin Nastacia L.ORCID,Juarez BarbaraORCID,Zweifel Larry S.ORCID,Golden Sam A.ORCID

Abstract

AbstractHigh-throughput volumetric fluorescent microscopy pipelines can spatially integrate whole-brain structure and function at the foundational level of single-cells. However, conventional fluorescent protein (FP) modifications used to discriminate single-cells possess limited efficacy or are detrimental to cellular health. Here, we introduce a synthetic and non-deleterious nuclear localization signal (NLS) tag strategy, called ‘Arginine-rich NLS’ (ArgiNLS), that optimizes genetic labeling and downstream image segmentation of single-cells by restricting FP localization near-exclusively in the nucleus through a poly-arginine mechanism. A single N-terminal ArgiNLS tag provides modular nuclear restriction consistently across spectrally separate FP variants. ArgiNLS performance in vivo displays functional conservation across major cortical cell classes, and in response to both local and systemic brain wide AAV administration. Crucially, the high signal-to-noise ratio afforded by ArgiNLS enhances ML-automated segmentation of single-cells due to rapid classifier training and enrichment of labeled cell detection within 2D brain sections or 3D volumetric whole-brain image datasets, derived from both staining-amplified and native signal. This genetic strategy provides a simple and flexible basis for precise image segmentation of genetically labeled single-cells at scale and paired with behavioral procedures.Significance StatementQuantifying labeled cells in fluorescent microscopy is a fundamental aspect of modern biology. Critically, the use of short nuclear localization sequences (NLS) is a key genetic modification for discriminating single-cells labeled with fluorescent proteins (FPs). However, mainstay NLS approaches typically localize proteins to the nucleus with limited efficacy, while alternative non-NLS tag strategies can enhance efficacy at the cost of cellular health. Thus, quantitative cell counting using FP labels remains suboptimal or not compatible with health and behavior. Here, we present a novel genetic tagging strategy – named ArgiNLS – that flexibly and safely achieves FP nuclear restriction across the brain to facilitate machine learning-based segmentation of single-cells at scale, delivering a timely update to the behavioral neuroscientist’s toolkit.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3